首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   167293篇
  免费   16234篇
  国内免费   8522篇
电工技术   11921篇
技术理论   9篇
综合类   11999篇
化学工业   26532篇
金属工艺   9329篇
机械仪表   10941篇
建筑科学   13728篇
矿业工程   5177篇
能源动力   5051篇
轻工业   11603篇
水利工程   3530篇
石油天然气   9622篇
武器工业   1638篇
无线电   19861篇
一般工业技术   18790篇
冶金工业   7097篇
原子能技术   2072篇
自动化技术   23149篇
  2024年   357篇
  2023年   2707篇
  2022年   4777篇
  2021年   7252篇
  2020年   5480篇
  2019年   4491篇
  2018年   4897篇
  2017年   5619篇
  2016年   4909篇
  2015年   7148篇
  2014年   8867篇
  2013年   10469篇
  2012年   11927篇
  2011年   12530篇
  2010年   11112篇
  2009年   10587篇
  2008年   10150篇
  2007年   9658篇
  2006年   9539篇
  2005年   7998篇
  2004年   5547篇
  2003年   4551篇
  2002年   4292篇
  2001年   3751篇
  2000年   3613篇
  1999年   3590篇
  1998年   2928篇
  1997年   2470篇
  1996年   2276篇
  1995年   2003篇
  1994年   1584篇
  1993年   1115篇
  1992年   922篇
  1991年   709篇
  1990年   529篇
  1989年   457篇
  1988年   361篇
  1987年   241篇
  1986年   162篇
  1985年   97篇
  1984年   67篇
  1983年   43篇
  1982年   68篇
  1981年   45篇
  1980年   46篇
  1979年   21篇
  1978年   10篇
  1977年   9篇
  1976年   18篇
  1959年   12篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
91.
92.
In this work, we introduced a simple solution processing method to prepare yttrium (Y) doped hafnium oxide (HfO2) based dielectric films. The films had high densities, low surface roughness, maximum permittivity of about 32, leakage current < 1.0 × 10?7 A/cm2 at 2 MV/cm, and breakdown field >5.0 MV/cm. In addition to dielectric performance, we investigated the influence of YO1.5 fraction on the electronic structure between Y doped HfO2 thin films and silicon (Si) substrates. The valence band electronic structure, energy gap and conduction band structure changed linearly with YO1.5 fraction. Given this cost-effective deposition technique and excellent dielectric performance, solution-processed Y doped HfO2 based thin films have the potential for insulator applications.  相似文献   
93.
CoCrNiCux (x=0.16,0.33,0.75,and 1) without macro-segregation medium-entropy alloys (MEAs) was prepared using laser directed energy deposition (LDED).The microstructure and mechanical properties of CoCrNiCux alloys with increas-ing Cu content were investigated.The results indicate that a single matrix phase changes into a dual-phase structure and the tensile fracture behaviors convert from brittle to plastic pattern with increasing Cu content in CoCrNiCux alloys.In addi-tion,the tensile strength of CoCrNiCux alloys increased from 148 to 820 MPa,and the ductility increased from 1 to 11%with increasing Cu content.The nano-precipitated particles had a mean size of approximately 20 nm in the Cu-rich phase area,and a large number of neatly arranged misfit dislocations were observed at the interface between the two phases due to Cu-rich phase precipitation in the CoCrNiCu alloy.These misfit dislocations hinder the movement of dislocations during tensile deformation,as observed through transmission electron microscopy.This allows the CoCrNiCu alloy to reach the largest tensile strength and plasticity,and a new strengthening mechanism was achieved for the CoCrNiCu alloy.Moreover,twins were observed in the matrix phase after tensile fracture.Simultaneously,the dual-phase structure with different elastic moduli coordinated with each other during the deformation process,significantly improving the plasticity and strength of the CoCrNiCu alloy.  相似文献   
94.
Although remarkable development of titanate-based glasses has been achieved, challenge remains to elucidate the correlation between structure and glass-forming properties in these systems due to their complex structure that is inconsistent with the classic Zachariasen's model. In this work, we aim to correlate the structural evolution of titanate melts to their glass-forming ability (GFA). The prototypical material barium dititanate (BaTi2O5, BT2) melts with different GFA were rendered by controlled melting atmospheres, and the corresponding structural changes were determined using in situ high-energy synchrotron X-ray diffraction combined with empirical potential structure refinement and ab initio molecular dynamics. The results show that BT2 melt in reducing atmosphere shows poor GFA but that in oxidizing atmosphere presents good GFA. Structural analysis demonstrates the mean coordination number of [TiOm] polyhedra is analogous in the melt under two different atmospheres but an enhanced heterogeneous cations aggregation takes place in the melt under reducing atmosphere, which is closely related to oxygen-deficiencies. Furthermore, we reveal that the enhanced heterogeneous cations aggregation promotes crystallization (and therefore hinders glass formation) through disordering the distribution of [TiOm] and [BaOn] polyhedra, changing the connectivity between these polyhedra, creating more crystal-like Ti-Ti clusters, and decreasing topological disorder of BT2 melt. Our work provides a new viewpoint to understand the GFA of titanates melt from structural heterogeneity beyond the previous perspectives that only focus on [TiOm] polyhedra.  相似文献   
95.
Chemistry and Technology of Fuels and Oils - In this paper, the authors have developed a new device and method for measuring the efficiency of spontaneous imbibition and displacement in a low...  相似文献   
96.
Ge2Sb2Tes is the most widely utilized chalcogenide phase-change material for non-volatile photonic applications,which undergoes amorphous-cubic and cubic-hexagonal phase transition under external excitations.However,the cubic-hexagonal optical contrast is negligible,only the amorphous-cubic phase transition of Ge2Sb2Te5 is available.This limits the optical switching states of traditional active dis-plays and absorbers to two.We find that increasing structural disorder difference of cubic-hexagonal can increase optical contrast close to the level of amorphous-cubic.Therefore,an amorphous-cubic-hexagonal phase transition with high optical contrast is realized.Using this phase transition,we have developed display and absorber with three distinct switching states,improving the switching perfor-mance by 50%.Through the combination of first-principle calculations and experiments,we reveal that the key to increasing structural disorder difference of amorphous,cubic and hexagonal phases is to intro-duce small interstitial impurities(like N)in Ge2Sb2Tes,rather than large substitutional impurities(like Ag)previously thought.This is explained by the formation energy and lattice distortion.Based on the impurity atomic radius,interstitial site radius and formation energy,C and B are also potential suit-able impurities.In addition,introducing interstitial impurities into phase-change materials with van der Waals gaps in stable phase such as GeSb4Te7,GeSb2Te4,Ge3Sb2Te6,Sb2Te3 will produce high optical con-trast amorphous-metastable-stable phase transition.This research not only reveals the important role of interstitial impurities in increasing the optical contrast between metastable-stable phases,but also proposes varieties of candidate matrices and impurities.This provides new phase-change materials and design methods for non-volatile optical devices with multi-switching states.  相似文献   
97.
Large domain wall (DW) conductivity in an insulating ferroelectric plays an important role in the future nanosensors and nonvolatile memories. However, the wall current was usually too small to drive high-speed memory circuits and other agile nanodevices requiring high output-powers. Here, a large domain-wall current of 67.8 μA in a high on/off ratio of ~4460 was observed in an epitaxial Au/BiFeO3/SrRuO3 thin-film capacitor with the minimized oxygen vacancy concentration. The studies from read current-write voltage hysteresis loops and piezo-response force microscope images consistently showed remaining of partially unswitched domains after application of an opposite poling voltage that increased domain wall density and wall current greatly. A theoretical model was proposed to explain the large wall current. According to this model, the domain reversal occurs with the appearance of head-to-head and tail-to-tail 180° domain walls (DWs), resulting in the formation of highly conductive wall paths. As the applied voltage increased, the domain-wall number increased to enhance the on-state current, in agreement with the measurements of current-voltage curves. This work paves a way to modulate DW currents within epitaxial Au/BiFeO3/SrRuO3 thin-film capacitors through the optimization of both oxygen vacancy and domain wall densities to achieve large output powers of modern domain-wall nanodevices.  相似文献   
98.
Mercury, lead, and cadmium are among the most toxic and carcinogenic heavy metal ions (HMIs), posing serious threats to the sustainability of aquatic ecosystems and public health. There is an urgent need to remove these ions from water by a cheap but green process. Traditional methods have insufficient removal efficiency and reusability. Structurally robust, large surface-area adsorbents functionalized with high-selectivity affinity to HMIs are attractive filter materials. Here, an adsorbent prepared by vulcanization of polyacrylonitrile (PAN), a nitrogen-rich polymer, is reported, giving rise to PAN-S nanoparticles with cyclic π-conjugated backbone and electronic conductivity. PAN-S can be coated on ultra-robust melamine (ML) foam by simple dipping and drying. In agreement with hard/soft acid/base theory, N- and S-containing soft Lewis bases have strong binding to Hg2+, Pb2+, Cu2+, and Cd2+, with extraordinary capture efficiency and performance stability. Furthermore, the used filters, when collected and electrochemically biased in a recycling bath, can release the HMIs into the bath and electrodeposit on the counter-electrode as metallic Hg0, Pb0, Cu0, and Cd0, and the PAN-S@ML filter can then be reused at least 6 times as new. The electronically conductive PAN-S@ML filter can be fabricated cheaply and holds promise for scale-up applications.  相似文献   
99.
100.
Ambient condition, especially the wind condition, is an important factor to determine the behavior of hydrogen diffusion during hydrogen release. However, only few studies aim at the quantitative study of the hydrogen diffusion in a wind-exist condition. And very little researches aiming at the variable wind condition have been done. In this paper, the hydrogen diffusion in different wind condition which including the constant wind velocity and the variable wind velocity is investigated numerically. When considering the variable wind velocity, the UDF (user defined function) is compiled. Characteristics of the FGC (flammable gas cloud) and the HMF (hydrogen mass fraction) are analyzed in different wind condition and comparisons are made with the no-wind condition. Results indicate that the constant wind velocity and the variable wind velocity have totally different effect for the determination of hydrogen diffusion. Comparisons between the constant wind velocity and the variable wind velocity indicate that the variable wind velocity may cause a more dangerous situation since there has a larger FGC volume. More importantly, the wind condition has a non-negligible effect when considering the HMF along the radial direction. As the wind velocity increases, the distribution of the HMF along the radial direction is not Gaussian anymore when the distance between the release hole and the observation line exceeds to a critical value. This work can be a supplement of the research on the hydrogen release and diffusion and a valuable reference for the researchers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号